Biharmonic Green domains in a Riemannian manifold
نویسندگان
چکیده
Let R be a Riemannian manifold without a biharmonic Green function defined on it and Ω a domain in R. A necessary and sufficient condition is given for the existence of a biharmonic Green function on Ω.
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملBiharmonic Maps into Compact Lie Groups and the Integrable Systems
In this paper, the reduction of biharmonic map equation in terms of the Maurer-Cartan form for all smooth map of an arbitrary compact Riemannian manifold into a compact Lie group (G, h) with bi-invariant Riemannian metric h is obtained. By this formula, all biharmonic curves into compaqct Lie groups are determined, and all the biharmonic maps of an open domain of R with the conformal metric of ...
متن کاملBiharmonic maps from R into a Riemannian manifold
For a domain R and a Riemannian manifold N R. If u 2 W ( ; N) is an extrinsic (or intrinsic, respectively) biharmonic map. Then u 2 C( ; N). x
متن کاملBiharmonic Capacity and the Stability of Minimal Lagrangian Submanifolds
We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds. MSC 1...
متن کاملEnergy identity of approximate biharmonic maps to Riemannian manifolds and its application
We consider in dimension four weakly convergent sequences of approximate biharmonic maps to a Riemannian manifold with bi-tension fields bounded in L for p > 4 3 . We prove an energy identity that accounts for the loss of hessian energies by the sum of hessian energies over finitely many nontrivial biharmonic maps on R. As a corollary, we obtain an energy identity for the heat flow of biharmoni...
متن کامل